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The non-linear theory of strongly perturbed flows, with a structure of the velocity fields which is characteristic of domains of so- 
called free interaction of the boundary layer with an external potential flow, is considered. The specific details of the transonic 
flow show up not only in the estimates of the amplitudes and lengths of the perturbation waves in the asymptotic analysis of the 
problem but, also, in the fact that the motion may turn out to be simultaneously unsteady in the part of the boundary layer close 
to the wall and in the external potential flow. This mechanism of the evolution of the perturbations can be described by a single 
integro-differential equation which, assuming that the structure of the fluctuating fields is a quadrideck structure, is derived using 
the Fourier-Laplace method. Examples of its non-linear solutions are given in the form of solitary or periodic waves. 0 2001 
Elsevier Science Ltd. All rights reserved. 

1. A BOUNDARY LAYER WITH 
A SELF-INDUCED PRESSURE IN TRANSONIC FLOW 

A number of new aspects arise in Prandtl’s theory when the concept of free interaction is introduced. 
According to this concept, unlike in the classical representations, a pressure gradient is induced by the 
boundary layer itself and it cannot be calculated from the solution of the external potential flow problem. 
A result of an asymptotic analysis of the system of Navier-Stokes equations [l-7] involves a derivation 
of Prandtl’s equations with a self-induced pressure for the narrow subdomain which is in the immediate 
vicinity of the surface past which the flow occurs. This narrow subdomain is found to have a predominant 
effect on the growth of the displacement thickness of the boundary layer. Non-linear perturbation theory, 
which describes the process of free interaction, can be generalized to include unsteady flows [8-111, 
where the time derivatives in the equations of the first approximation only have to be retained in the 
above mentioned boundary sublayer if the free-stream velocity supersonic or subsonic. In the two other 
subdomains and, in fact, the main thickness of the boundary layer and the external potential flow, the 
gas motion is quasi-steady and the time derivatives only occur in the asymptotic equations for the higher 
approximations. 

Conversely, in the case of transonic velocities of the gas motion, the dependence of the required 
functions on time turns out to be important precisely in the external potential part of the flow. This 
fact is an important feature in the extension of a previously proposed [12] asymptotic model of the 
interaction of a boundary layer with a transonic flow to unsteady motions [13]. Here, the velocity fields 
are found to be quasi-steady fields in the main thickness of the boundary layer and in the viscous sublayer. 
However, the generalization in [13] of the asymptotic scheme in [12] is not the only possible generaliza- 
tion. The alternative approach in [14] to the construction of a triple-deck theory of unsteady transonic 
flows gives rise, as a consequence, to a situation (which has not been previously encountered in asymptotic 
analysis) when terms containing time derivatives appear both in the system of equations for the viscous 
boundary sublayer and in the equation for the external potential perturbations (which, unlike the 
analogous equation in [13]), becomes linear). 

If the amplitudes of the perturbations exceed the orders of magnitude which are dictated by the 
assumptions of the theory [l-7], the asymptotic analysis of the pulsation fields is based on a more complex 
structure of the flow field. In the case of the super- and subsonic ranges, this analysis leads to the 
formulation of a quadrideck asymptotic theory [15, 161, an important component of which is the proof 
of the applicability of the Burgers and Benjamin-On0 equations [17, 181 to the description of the 
evolution of perturbations. 

The previously developed representations [15, 161 enable one to consider transonic flows with a 
quadrideck structure of the domain of interaction [19]. As previously [14], the wave pattern includes 
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an extremely unsteady domain in the lower part of the boundary layer close to the wall and in the upper 
potential flow field. However, the asymptotic division of the domain of self-induced pressure into four 
sublayers is associated with the investigation of a class of perturbations which are characterized by a 
different normalization of the independent variables and the required functions, in particular, the greater 
relative magnitude of the amplitude compared with the normalization considered in [14]. The integro- 
differential equation, previously obtained in [19], which describes the free interaction process, reduces 
to the Burgers or Benjamin-On0 equations on leaving the transonic range (towards higher or lower 
Mach numbers). In this sense, the theory developed in [19] is an analogue of the approaches in [15, 
161, which were proposed for Mach numbers of finite amplitude differing from unity. 

Below, the main integro-differential equation in the asymptotic theory of the interaction of a boundary 
layer with a transonic flow, previously proposed in [19], is derived by another method, the Fourier- 
Laplace method. 

2. A QUADRIDECK ASYMPTOTIC SCHEME OF FREE INTERACTION 

Consider a flat plate, past which there a uniform flow of a compressible gas with a velocity UL, density 
~1, pressure& dynamic coefficient of viscosity ~2, speed of sound al. Directing thex* axis of a Cartesian 
system of coordinates (x’, y’) along the surface of the plate, we define the Reynolds number 
Re = p~iY~L*/p~ through a distance L' from the leading edge (0,O) up to a certain short domain in 
the neighbourhood of the point (L', 0). We shall denote dimensional quantities by an asterisk and specify 
an estimate of the smallness of the above-mentioned domain in terms of the Reynolds number 
Re + 00 and a second parameter 6 + 0 which characterizes the transonic nature of the flow as follows. 

Suppose the Mach number M, = Ul/ut of the free stream is close to unity, namely 

M;=I+liQ_, Q&=0(1), 6-O (2.1) 
Everywhere, we will hence forth assume that the order of magnitude relation between the small 

parameter 6 and the Reynolds number Re, which takes large values 

is satisfied. 

8’Re+w (2.2) 

Then, in the case of unsteady perturbations of the primarily steady flow (which includes a laminar 
boundary layer and uniform external flow), we introduce the dependence of the velocity components 
u*, u’, the density p* and the pressure p* on the time and the spatial coordinates by means of the fast 
variables . 

As can be seen from (2.3) the condition X = 0( 1) fixes the longitudinal scale Ax: - 8-y2 Re-‘hL* of 
the domain which is separated by a distance L' from the leading edge and, moreover, according to (2.2), 
this scale is short: Ax’ 4 L'. At the same time, the vertical scale by’ - 6-* Re-‘hL* of this domain, 
which is established by the condition Y, = O(l), is much greater than the thickness Re-‘hL* of the 
boundary layer which has been formed in the cross-section x* = L*. Hence, the normalization (2.3) of 
the vertical coordinate means that the boundary layer (deck 2 in Fig. 1) is located at Y, + 0 and, in 
the domain Y, = O(1) which is external to it (denoted as deck 1 in Fig. l), viscosity and heat conduction 
are unimportant and the flow in it is vortex-free. 

We write the equation for the potential @* = @*(t*, x*, y’) in deck I over the plane of the plate past 
which the flow occurs [20, 211 as 

i!f.!L&2 _(?!!!J]+$q**2 _(iEJ]_~_ 
_2 a2a* aa* aa* 2 a2cg* acp’ a%* aa* = o 

--- -- 

._-_----_ afax* ax* ax*ay* ax* ay* at*ay* ay* (2.4) 

together with the Lagrange-Cauchy integral 
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Fig. 1 

Here, y is the ratio of the specific heat capacities. We represent the velocity potential 

* aa’ * aa* 
u z-y, v =- 

ax aY* 

in the form 

a* 
-=I+6 
L*iJ; 

-% ~~-)/2 x + 6% Re- hp,,(T,X,Y")+... 

(2.6) 

(2.7) 

The first two terms in (2.7 
(x’ - L*)L’-’ = O(6-3/2 Re-‘h 

give the potential of the unperturbed flow 0* = Ulx* at short distances 
for X = O(1). Substituting (2.7) into (2.6) we obtain 

Taking account of expansions (2.8), we write the Lagrange-Cauchy equation in the form 

(2.9) 

The density p’ and the pressure of the gasp’ are related by the equation of state and by the equation 
of a Poisson adiabatic curve which holds in the first approximation in the case of the inviscid domain 
considered here and are conveniently represented in the form 

Then, substituting the asymptotic expansion (2.9) into (2.10), we find 

L l_6a!k+..., -2L-g2acpI.+... p*-P* 

P: Px2 2X 

(2.10) 

(2.11) 

Hence, all the flow functions are expressed using formulae (2.8) and (2.11) in terms of the perturbation 
of the potential cplU. Note that relations (2.9)-(2.11) are in no way associated with assumption (2.1) 
regarding the closeness of the Mach number to unity, their derivation rests solely on estimate (2.2) for 
the two parameters 6 + 0 and Re + 00 occurring in (2.3) and (2.7). 

As far as the function cplU is concerned, we obtain the equation for it by an asymptotic simplification 
of Eq. (2.4) subject to assumption (2.1) concerning the transonic nature of the flow using relations (2.3) 
and (2.7)-(2.9). 

We substitute expressions (2.1), (2.7) and (2.9) into Eq. (2.4) and the leading terms will then be 
of order of magnitude z. = Zi9h Re h Vz L’-‘. On discarding terms of higher infinitesimals - 8”‘~ Re’hU’,3 
L*-’ and cancelling out the factor z. in the equation, we obtain 
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2 a2’91u 
aTax 

+e a2Wu a2’P~~ _ O 

"T-T- 
(2.12) 

Equation (2.12) was proposed in [14] within the framework of an alternative approach to the formulation of 
the theory of free interaction with the aim of retaining the terms determining the loss in stability of the boundary 
layer in a transonic external flow. Several other considerations were incorporated into the basis of the derivation 
of Eq. (2.12) in [19], where it is a condition for the compatibility of the asymptotic equations of the second 
approximation for perturbation of the gas dynamic functions in the upper deck of interaction. 

Hence, the expression for the potential (2.7), in which the function cp’,(T, X, Y,) satisfies Eq. (2.12), 
is equivalent to the following representations of the flow functions in deck 1 which is adjacent from 
above to the boundary layer 

II* 

u, 
-I+62u,,+ _..) -;_- ii--T-=s % 

K 
I/,“+..’ 

& = I + ci2p, P”-PiTa 
u . . . . -=i32p,u+... 

Pm KJJ:= 

where, in accordance with relations (2.8) and (2.11) 

a% hl” u--v - 
lu- ax ’ ‘Id = au, ’ 

Plu = Plu = -?u 

(2.13) 

(2.14) 

The perturbations (2.13) and (2.14) penetrate into the boundary layer (deck 2), initiating in it the 
fluctuation field 

$=“o+su,,+62u,,“+ . . . . $=gXv,m+S~2m+... 
00 

~=Ro+sp,,+s2p,,+..., q= 
P2Jm 

s2p,* -G3p2, +... 
(2.15) 

Here UO = U,(Y,), RO = &(Y,) are the velocity and density profiles in the unperturbed steady-state 
laminar boundary layer, Y, = Re’h L*-’ y’ is the vertical coordinate, which is of the order of unity in 
the interior 2 of the boundary layer and is related to the coordinate of the upper interaction deck 1, 
which has been previously introduced by means of relations (2.3), as follows: 

Y, = F2Yu (2.16) 

The variables T, Xand Y,,, are the arguments of the functions with subscriptsjm,j = 1,2, . . . in (2.15). 
Substituting expressions (2.15) into the Navier - Stokes equations we determine the first terms of the 
expansions, apart from the arbitrary functions A,(T, X) 

dU0 
~1~ = A,(Tvx)d~. V~rn = ax 

_~A’u~(Y,). p,,,, = A, $7 PIN = P,m(T,X) 
m m 

x au 
U2m = -4@‘m)~,, - _I,$=dX’ 

m 

(2.17) 

V 2m = 
I dY; -$+-A,$~-$Uo(Ym) 

The 
behaviour of the solution of (2.17) in the lower part of the boundary layer follows from the limiting 
properties 

u, = h,Y* +..., Ro=ro+... (Y,,,+O) (2.18) 
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Taking account of (2.18) we write the internal limit of the expansions (2.15) and (2.17) when 
Y, -+ 0 in the form 

$+h,(Y,+GA,)+ . . . . 

$+-sx,,~Ym-6 

(2.19) 

If Y,,, = O(6), then, by relations (2.19), the velocity perturbation &A, becomes a quantity of the 
order of magnitude of the unperturbed velocity Air,. Consequently, a non-linear deck 3 (Fig. 1) arises 
in the lower part of the boundary layer 2. We define the variable Y, by the formula 

and then Y, = 0( 1) in deck 3. 

Y, = 5-’ Y, (2.20) 

Relations (2.14) and (2.17) were obtained without taking account of the viscous terms in the Navier- 
Stokes equations. In the case of perturbations of the form of (2.15), viscous effects manifest themselves 
in the thin sublayer (deck 4 in Fig. 1) which comes into contact with the wall. This sublayer has a thickness 
of the order of Y, = O(&,), where the small parameter 

(2.21) 

We now introduce a new vertical coordinate 

yr = pi’ Y, (2.22) 

Then, in the above mentioned viscous layer, the perturbations of the flow functions depend on the 
variables T, X and Y, and they are given by the expansions 

$&,,+ . . . . 

;=ro+..., 

$=GgRepxv,,+... 

p* -p: -=ti*p,/+... 
PC.2 PX2 

(2.23) 

We will now consider the question of the ratio of the thicknesses of decks 3 and 4, which depends 
on the asymptotic estimates of the parameter 6 in terms of the Reynolds number Re. Relation (2.2), 
as was noted above, means that the longitudinal scale Ax’ is small compared with L*. 

We assume that Y, = Yr which is equivalent to the assertion that decks 3 and 4 are superposed. 
Comparison of the right-hand sides of equalities (2.20) and (2.22) gives 

6 = Re-x (2.24) 

Relation (2.24) guarantees that condition (2.2) is satisfied. The case of (2.24), when the domain of 
disturbed motion has a three-layer structure and the non-linear and viscous sublayers merge with one 
another, has been considered previously in [ 141. 

We shall reinforce the constraint (2.2) even further and require that the condition 

must be satisfied instead of (2.24). 
By virtue of the dependence 

69Re+m (2.25) 

Y,&RexY 0 (2.26) 

which follows from relations (2.20) and (2.22), it can be concluded that Y, + 0 when Y1 = O(1) in the 
case of (2.25). This means that the thickness of deck 4, which is adjacent to the wall, is much less than 
the thickness of deck 3. In other words, if the amplitude of the perturbations 6 (in expansions (2.13), 
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(2.15) and (2.23)) exceeds the value of (2.24) in order of magnitude and condition (2.25) is satisfied, 
then the flow field acquires a quadrideck structure [19] where the viscous sublayer 4 is located at the 
bottom of the non-linear sublayer 3 (Fig. 1). 

It remains to point out that the right-hand gides of the limiting expressions (2.19) rewritten in terms 
of the variable Y,, serve as exact solutions of the asymptotic equations for the inviscid non-linear deck 
3. Hence, expansions (2.15) and (2.17) and their inner limit (2.19) hold up to the upper boundary of 
the viscous sublayer 4, that is, when Y,,, = O@a), Y, = 0 (p&-‘), and they must be matched with the 
functions (2.23). However, it follows from condition (2.25) that PO + 6 and it is clear from relation (2.26) 
that the upper boundary of the viscous sublayer corresponds to Y,$-’ = Y, + 0. Hence, even without 
matching (2.19) to (2.23) it can be shown directly that the necessary condition for its realizability is 
just 

1 aPlm $+h,A, !!$= ___ 
k.,r, ax 

(2.27) 

We now consider the outer limit as Y, -+ 00 of expansions (2.15) and (2.17) which, by relation (2.16) 
must be equal to the inner limit, as Y, -+ 0, of expansions (2.8) and (2.11) for the upper flow deck 2. 
Since 

the asymptotic sequences (2.15) at the upper edge of boundary layer 2 are transformed in the following 
manner: 

* 
4-3 I--82p,m+...r 

u’ 

r/, 
_-j-g&+.., 
u, ax 

(2.28) 

P* 
ii- 

-3 I+tPp,, . . . . P* - P* ~-+62p,m +... 
P2t 

The outer asymptotic form (2.28) establishes the limiting form of expressions (2.8) and (2.11) taken 
as Y, + 0, which gives 

(2.29) 

We now eliminate the unimportant constants hi, r. from relations (2.12) (2.27) and (2.29) by a change 
in the scales of the quantities using the previously indicated similarity transformation [19]. Changing 
from T,X, Y,,,Al,pl,, qlu, Q_ to the variables t,x,y,,A,p, cp, K., respectively, we write the closed system 
of inviscid equations in the final form 

a2q +K atax 
3% 2% =. 
--2 - ax2 ay, 

?&+A_=-- aA ap 
at ax ax 

amx,o) awx,o) WJ) _ 
ax = -p(r, xl, 

ah ax 

(2.30) 

(2.31) 

(2.32) 

We will now show that the system of equations (2.30)-(2.32) yields a single integro-differential equation 
for the functionA(t,x), and, when deriving this equation, we shall be guided by several other arguments 
compared with those previously used in [19]. 
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3. INTEGRAL FORMULA FOR THE POTENTIAL ESTABLISHED BY 
THE FOURIER-LAPLACE METHOD 

In the equation for the potential (2.30) we carry out a Fourier transformation with respect to the 
variable x 

cp*(r,k,y”)= ~‘P(‘,X>yJ?-‘l’dx, q+vY,)= & =f’P’(Lk,Y”)e”“dk 
-ca -N 

and a Laplace transformation with respect to the variable t 

cp’“(h,k,y,)=qjcp*(t,k,yu)e-~~f, O’(f,il.Y~)=~~~~~*~(~~k.Y,.)e’~ 
0 

We shall assume that cp(t, X, y,) = 0, t s 0. Then 

We put i = eid2, assuming 

(3.1) 

in the expressions containing multivalued functions, where the upper sign is taken when k > 0 and the 
lower sign when k < 0. The solution of Eq. (2.1) which decays asy, + +=, has the form 

p”(h,k,Yu)=lp*‘(h.k,0)exp[-(ik))4(~+ikK~)’Yu] (3.2) 

In order to determine the quantity cp**(h, k, 0), we make use of the second boundary condition from 
(2.32) which has been rewritten in terms of the Fourier-Laplace transforms 

acp**(Lk,o) 

aY” 
= -ikA**(h,k) 

(3.3) 

Differentiating equality (3.2) with respect to yu, from condition (3.3) we find 

cp**(h k o)= (ik)xA**(Lk) 9 , 
(h+ikK,)x 

Hence 

**G.k) 
A**(%k,Y,) 

(ik)% 

where 

A**(Lk,Y,,) = 
exp[-(ik)x(h+ikKm)‘Y,] 

(h+ikK,)’ 

(3.4) 

(35) 

We use the formula [23] 

(3.6) 



72 v. I. Zhuk 

which has been proved using the Poisson integral [22] 

and calculate the inverse Laplace transform for the function A**@, k, y,). Making the substitution 
X = ht - ikK_ in transform formula (3.6) we find 

I -i&K& ‘+‘- 
=-_e Je 

-(;k)"' k!‘2yu +hd 

2Ki I-b 
(3.7) 

According to the multiplication theorem [23], the inverse transform of the product of the transforms 
is expressed in terms of a convolution of the inverse transforms of the factors 

The inverse transform (3.7) of the function p*(h, k, y,) which has been found above therefore enables 
one to invert the Laplace transform cp**(h, k, y,,) from (3.5) 

qqr.k Y,) = ’ ’ aA * 

oi/zo ax I[ 1 (z*k)e 

-ikK,(f-r)-iky,’ /[4(r-7)) dT 

XT? 
(3.8) 

We now put y, = 0 in (3.8) and calculate the inverse Fourier transform of the function q*(t, k, 0) 
with respect to the variable x 

(3.9) 

Here, Q = x - K,(r - 2). Internal integration with respect to k in relation (3.9) gives 

_ ,ilk]&Q) 

F----- 

m ,-ikC$-Q, 

o (-ilkI)’ 
&I+ IT 

00 iKe-“(g-Q) 

o (ik)A 
dk=2Im{ dk = 

0 kK 

since [23] 

Hence, the domain of integration S in relation (3.9) with respect to the variable z and 5 is given by 
the inequalities 

s: Ocz<r, c<Q=.x-K,(r-z) 

Consequently, inversion of the Fourier-Laplace integral transforms under the assumption that 
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cp(0, x, yJ = 0 establishes the relation 

B(r,x;a) = ;jdT 
x-Kw(‘-T) 

I 
aA(r.5) d5 

a -on % ,/(t - ‘T)(x - 5) - K,(r - r)* 

(3.10) 

Now, suppose the initial data are non-trivial: 

cp(OJ,Y,) = cPo(wJ 

On applying a Fourier-Laplace transformation with respect to the variables t and x to the equation 
for the potential once again, we obtain the equation 

a*g 
--+ikhcp** 

dy,’ 
-k’K,cp” = f. (3.11) 

in 9” = cp**(h, k, y,), which differs from (3.1) in the fact that there is an inhomogeneous term 
f0 = &p&y,) = ikcp’(0, k, y,). In order to take account of this term, we initially find the solution of 
Eq. (3.11) with the homogeneous boundary conditions 

y,=o: acp**lay,=O, y,--++=: cp**-,o (3.12) 

We now construct Green’s function of boundary-value problem (3.11), (3.12) on the semi-axis 
y,, 3 0. For brevity, we use the notation 

B=(ik)X(h+ikK,)’ 

and consider the two linearly independent solutions of the homogeneous equation (3.1) 

(3.13) 

with the Wronskian w = r&w1 - w2w; = -2 6. The function vi satisfies the first boundary condition of 
(3.2) and, by virtue of the fact that arg 6 E (-rc/2,7t/2) for any sing of k, the function ~2 satisfies boundary 
condition (3.12) 

Green’s function [24] 

yields the solution of boundary-value problem (3.11), (3.12) in the form 

cp'**(h.k,y,)=TG(y,.yl)fo(Y:)dY: = 
0 

I =-- 
W 

[ 

w2(yu): w,(y:)fo(y:)dyl +ur,(y,)syr,(yl)fo(y:)dY: = 
0 YU 1 

=~[e-~Y”F,(h,k;o,y,)+~~yu~(~,k;y”,~)+e~yuF_(l,k;O.~)l (3.14) 

F,(h,k;o,b)=~ef’L7y’fO(Y:)dYl 
” 
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In particular, ‘when y,, = 0, we have, from relation (3.14) 

X**(h,k) = cp**(h,k,O) = 1 g F_(h,k;O,=) (3.15) 

The required solution of the initial-boundary-value problem for Eq. (2.30) is obtained as the sum of 
the solutions of prbblems with zero Cauchy data and with a homogeneous boundary condition when 
YU = 0. Their transforms in spectral space after the Fourier-Laplace transformation are given by 
expressions (3.5) and (3.14); inversion of these transforms yields the potential motion pattern in the 
half-plane yU 3 0, if the boundary function &p(t, X, O)/&, is known. 

However, the multistructured asymptotic theory considered here is characterized by the fact that the 
velocity potential cp(t, X, y,) can only be found as a result of the simultaneous solution of the boundary- 
value problems within the boundary layer and the outer deck described by Eq. (2.30), which is adjacent 
to it from above. Hence, neither the potential function cp(t, x, 0) nor its normal derivative &p(t, X, O)/$v, 
are known in advance. 

On the other hand, these two functions cannot be specified independently; we obtain the relation 
between them in spectral space by summing expressions (3.5) (when yU = 0 and taking account of 
condition (3.3)) and (3.19, that is, 

where the quantity 19 is defined in (3.13). Since the inverse Laplace transformation of the first term in 
relation (3.16) has already been calculated and is expressed by equality (3.8) (when y, = 0), we shall 
find the original of the second term. Again, by using formula (3.6) and and making the same change 
of the variable of integration as in (3.7), we obtain 

,,(t,k) = (ik)%lrp’(a,k, y:)e_“K”‘-ikY;2 ‘(4f) 

0 

for ~‘(t, k) = ~‘(t, k, 0) from equality (3.15). 
Hence, by using inversion of the Laplace transform, an integral relation is obtained between the 

Fourier transforms of the potential and its normal derivative (which is given by the second relation of 
(2.32)) on the boundaryy, = 0 

q*(t,k,O) =W,k;O)+lo(r,k) (3.17) 

Q(r,k;a)=- 

We put t = t’ - to on the right-hand and left-hand sides of equality (3.17), thereby changing to the 
functions 

A’(t’,x)= A(t’-tO,x) = A(t,x), (~‘(t’,~,y”)=cp(t’-~~.x,y”)= ($tLx.y,) 

We next replace the variable of integration: z = 2’ -to in the first term on the right-hand side of equality 
(3.17). Then, instead of (3.17), we obtain a more general formula (the primes on the new functions 
and independent variables are omitted) 

(3.18) 
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The first integral from equality (3.18) when to = - 00, which is understood as being an.improper 
integral, converges (according to the Dirichlet test [22]). Assuming the absolute convergence of the 
improper integral 

we now estimate the second integral from equality (3.18) when to + - 00 

(3.19) 

Taking the limit as to -+ - m we obtain (in the case when Cm(to, k) is bounded with respect to to) the 
special case of the representation of (3.18) for the Fourier transform of the potential function on the 
boundary y, = 0 

q’(t, k. 0) = @(I, k; --) (3.20) 

The estimate (3.19) serves as a basis for the possible replacement, in (3.10), of the lower limit of 
integration with respect to the time variable r by - 09. On repeating the calculations carried out when 
calculating the inverse Fourier transformation and when deriving expression (3.1) from (3.8), we obtain 

cp (I, x, 0) = B(r, x; -_) (3.21) 

Integral relation (3.21) was found earlier in [19] by somewhat different arguments, namely, by starting 
out from representations of the solutions of the wave equation, which are known in the theory of potential 
flows [25], in terms of the values of the normal derivative on the boundary. If the Cauchy data are given 
fort = to, then to has to be taken as the lower limit of integration in equality (3.21) and a term added 
which is the inverse fourier transformation of the second integral term in equality (3.18). 

Substituting expression (3.21) into the first of relations (2.32) we can eliminate the functionp from 
Eq. (2.31). Equation (2.31) is thereby transformed into an integro-differential equation in the function 
A and can be written in the form 

(3.22) 

4. LIMITING CASES 

We will now consider the asymptotic form of expression (3.20) when K, + + 00 and change from the 
variable of integration z E (- =, t) to the new variable v E (0, + -) using the formula 

‘ 

-- 

==’ Ik\;K, 

Taking into account the fact that 

WTJ) _+A(t--&-,x)=~+O(&-_-) (4.1) 

and using the value of the Fresnel integral [22] 
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with ‘an accuracy O( ] k I-Y2 K-3/2), we have 

41,x) 
cp(t.x,O) = K 

% 
(4.2) 

Here, as everywhere, the upper sign in the symbols + or 7 corresponds to k > 0 and the lower sign 
corresponds to k < 0. 

By virtue of relations (2.31) and (2.32) Eqs (4.2) reduce to Burgers equation 

dA+AaA I a2A 

at dx=Kz- 

Hence, Eq. (4.3) is the limiting form of Eq. (3.22) when K, + +=. 
Now suppose that K, + - 00. On introducing the new variable of integration 

V2 
7=t+- 

Iklrc, 

from relation (3.20), as previously, we find 

(4.3) 

(4.4) 

The well-known property of the Hilbert operator (which is proved, for example, using the Sokhotskii 
formulae [23]) 

1 O” -p. j e ikt & = i sign keih 

5-X 

enables us to change in (4.4) from the Fourier transforms to their inverse transforms: 

cp(r.x.0) = & 7 cp*(t, k. O)eik‘dk 1 ds s_x 

Consequently, relation (4.4) establishes the relation 

but relations (2.31) and (2.32) then reduce to the Benjamin-On0 equations [17, 181 

!?!+A% ' 
at 

v p j a2AO&> 4 
ax x * ‘_FF 

Hence, we have Eq. (4.7) as the limiting form of Eq. (3.22) as K, + --oo 

(4.5) 

(4.7) 

5. A TRAVELLING-WAVE TYPE SELF-SIMILARITY 

We will now consider a class of solutions of system (2.30)-(2.32) in which the dependence of all the 
functions on the variables t and x is specified in a self-similar form. In particular 

cp(t. x9 yy I= qNx - ct* Yu 1 

In this case, we have from Eq. (2.30) 

(C-K )a2’p+!k() - ax2 ay,' 
(5.1) 
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Suppose K, > c. Denoting two arbitrary functions by&) and h(x), we write the general solution of 
Eq. (5.1) in the form 

@=g(&-q)+h((+l-l); <=x-CL q=y,$cT (5.2) 

The requirement that C$ + 0 as x + - 00 uniformly with respect to y, excludes the propagation of 
perturbations along the characteristics of the second family 4 + rl = const. and, consequently, it is 
necessary to put h = 0 in (5.2). Perturbations from the main thickness of the boundary layer are 
transmitted to its upper edge and are carried away downstream along the characteristics of the first 
family < - rj = const. Whatever the function g(x), substitution of expression (5.2) with h E 0 into the 
two conditions (2.32) establishes the differential relation between p = p(x - ct) and A = A(x - ct) 

From relations (2.31) (2.32) and (5.3) we have Burgers equation 

! (5.3) 

(5.4) 

Let us now assume that Km c c. Equation (5.1) is Laplace’s equation in the variables 5 and n. The 
solution of Neuman’s problem for Laplace’s equation in the upper half-plane n > 0 is written in the 
form [24] 

(5.5) 

Differentiation of Eq. (5.5) with respect to 5 leads to one of the forms of Poisson’s formula [23] 

(5.6) 

We now introduce the variable of integration s = 5 - < and, for any E > 0, subdivide the integral on 
the right-hand side of (5.6) into three integrals, separating an integral in the section [-E, E], and take 
the limit on both sides of Eq. (5.6) as n + + 0 and then as E -+ + 0. As a result, we obtain that the 
following relation holds on the boundary y, = 0 

(5.7) 

The two conditions (2.32) 

together with relation (5.9) establish the integral relation 

- ai d&, 
p=-;v.p.] -- 

_ag 5-r 
(5.8) 

Together with @(<, T-& the function a@(<, q)/ac a so satisfies Laplace’s equation and, on repeating 1 
the derivation of formula (5.7) in the case of the last function, we find 

(5.9) 

Substituting expression (5.9) into the right-hand side of Eq. (2.31), we derive the Benjamin-On0 
equation for the function A 



78 V I. Zhuk 

(5.10) 

Hence, it has been shown that the system of equations (2.30)-(2.32), for solutions which depend on 
the combination x - ct, reduces to Eqs. (5.4) or (5.10). The possibility of such a reduction is based on 
the existence of the local relation (5.3) or the integral relations (5.7) and (5.8), which are special cases 
of the general relation (3.21) involving integral equation (3.22). 

6. THE SIMPLEST EXACT SOLUTIONS FOR c > K, 

The single soliton solution of Eq. (5.10) is given by the expression 

A= 
4c 

I+ c2(c - K-)(x - cr)2 
(6.1) 

and exists when K, c c < 0. If the amplitude of the soliton (6.1) is uniquely defined by its velocity 

then its characteristic width for a fixed amplitude can have any value. In particular, the “mass” of the 
soliton of the Eq. (6.1) 

&T 4lclk = 4 =-=*= 
I 

47T 

_J+c2(c-K,)(x-ct)* @_K,]K _J+.i2 (c-K,)% 

is not invariant in the whole set of solutions of the solitary wave type being a function of both c as well 
asiso~K__. In (6.1), ICI c jK,j everywh ere, in which case A + m if IK, I + I c I + 0 and .M + 0 if 

_ +m. 
A periodic solution of Eq. (5.10) can be represented in the form 

A=c+ 
2(1 -02) 

I + Ci2 - 20cos[k(x - ct)] 1 (6.2) 

The family of solutions (6.2) depends on the four parameters k, c, (T, K, and exists when 0 < cr < 1, 
c > K,, k > 0. The phase velocity c in (6.2) can be of either sign (unlike in (6.1)). 

The invariance of Eq. (3.22) with respect to the transformation 

and the transformation 

x+x-St, A+A+‘i!h,, K,-+K,-53 (6.4) 

enables one, without loss in generality in the class of solutions of the travelling wave type (6.2), to 
eliminate the time from Eq. (3.22) (that is, to change to a system of coordinates moving at velocity c 
by putting 9 = - c), and also to consider spatially 2rc-periodic solutions by selecting 93 = k-’ in (6.3). 
Having eliminated two parameters in the family of solutions (6.2) in this way, any solution from the 
given four-parameter family can be obtained from a narrower class by the application of transformations 
(6.3) and (6.4). Equation (3.22) is not invariant under a Galilean transformation since, according to 
(6.4), together with the transformation of the dependent and independent variables, the parameter& 
occurring in the equation also changes. 

Thus, in Eq. (6.2), we put c = 0, k = 1 and specify that 

1+02=_ (-K )% 

l-O2 V 

Then 
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(6.5) 

Here, K, c 0, v > 0 and the two parameters play a different role: K, occurs in (3.2) and actually changes 
the initial equation while v determines the set of solutions when the equation is given. 

While dwelling on the question of the different characteristic forms of the periodic solution, it is 
convenient to rewrite Eq. (6.5) in the form 

*J I- 

[ 

2Q I V2 
O<R<l 

V I-(I-R)J/tcosx ’ Q=fiK, 
(6.6) 

A graph of the function (6.6) is shown in Fig. 2 for v = 4, Q = 0.99 (the dashed curve) and v = 4, 
52 = 0.01 (the solid curve). 

7. PROPAGATION OF THE WAVE FRONT FOR c < K, 

The possibility of representing Eq. (3.22) in the form (5.4) enables us to state at once the existence of 
the exact solution. 

(7.1) 

The wave (7.1) which is travelling upstream on a zero background provides a mechanism for the 
transfer of the perturbations from a downstream domain 

A +0(x-+-~), A +-214(x+ +m) 

The inequality 

c < min [O, K-1 (7.2) 

serves as a cdndition for the existence of a solution of the form (7.1) 
Inequality (7.2) permits the existence of solutions of the form (7.1) even under subcritical conditions, 

that is, when 

- (c(<K,<O 

Since the function (7.1) corresponds to a boundary-layer separation wave in supersonic flow [26], 
the possibility of solutions of a similar type at Mach numbers smaller than the critical Mach number 
(K_, < 0) reflects the specific nature of the class of transonic flows being considered: a whole series of 
qualitative features of separated (or pre-separated) conditions which are characteristic of a flow pattern 
outside the transonic range of velocities and substantially different for M, c 1 and M, > 1 are present 
in the proposed asymptotic model. 

Together with (7.1), it can be shown that there are waves which propagate downstream, which are 
exact solutions of Eq. (3.22). They are described by a solution which differs from (7.1) in the replacement 

-10 -5 0 x 

Fig. 2 
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of 1 c 1 by - 1 c 1. In this case, the wave front asymptotically joins the two steady conditions upstream 
and downstream: 

A ++21cl (x+--00), A 4.0 (x-++m) 

These solutions exist subject to the condition K, > I c 1, that is, under supercritical transonic flow 
conditions. 

This research was supported financially by the Russian Foundation for Basic Research (98-01-00341). 
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